Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.344
Filtrar
1.
Nat Commun ; 15(1): 3088, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600064

RESUMO

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/genética , Óperon/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Nat Commun ; 15(1): 2191, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467648

RESUMO

The growth and division of mycobacteria, which include clinically relevant pathogens, deviate from that of canonical bacterial models. Despite their Gram-positive ancestry, mycobacteria synthesize and elongate a diderm envelope asymmetrically from the poles, with the old pole elongating more robustly than the new pole. The phosphatidylinositol-anchored lipoglycans lipomannan (LM) and lipoarabinomannan (LAM) are cell envelope components critical for host-pathogen interactions, but their physiological functions in mycobacteria remained elusive. In this work, using biosynthetic mutants of these lipoglycans, we examine their roles in maintaining cell envelope integrity in Mycobacterium smegmatis and Mycobacterium tuberculosis. We find that mutants defective in producing mature LAM fail to maintain rod cell shape specifically at the new pole and para-septal regions whereas a mutant that produces a larger LAM becomes multi-septated. Therefore, LAM plays critical and distinct roles at subcellular locations associated with division in mycobacteria, including maintenance of local cell wall integrity and septal placement.


Assuntos
Lipopolissacarídeos , Mycobacterium tuberculosis , Mycobacterium smegmatis/genética , Parede Celular , Mycobacterium tuberculosis/genética
3.
ACS Sens ; 9(3): 1359-1371, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38449100

RESUMO

N-Acetyl modification, a chemical modification commonly found on biomacromolecules, plays a crucial role in the regulation of cell activities and is related to a variety of diseases. However, due to the instability of N-acetyl modification, accurate and rapid identification of N-acetyl modification with a low measurement cost is still technically challenging. Here, based on hydroxylamine deacetylation and nanopore single molecule chemistry, a universal sensing strategy for N-acetyl modification has been developed. Acetohydroxamic acid (AHA), which is produced by the hydroxylamine deacetylation reaction and serves as a reporter for N-acetylation identification, is specifically sensed by a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA). With this strategy, N-acetyl modifications on RNA, DNA, proteins, and glycans were identified, demonstrating its generality. Specifically, histones can be treated with hydroxylamine deacetylation, from which the generated AHA can represent the amount of N-acetyl modification detected by a nanopore sensor. The unique event features of AHA also demonstrate the robustness of sensing against other interfering analytes in the environment.


Assuntos
Nanoporos , Hidroxilamina/metabolismo , Acetilação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Hidroxilaminas
4.
Sci Rep ; 14(1): 6794, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514663

RESUMO

Mycobacterial pathogens present a significant challenge to disease control efforts globally due to their inherent resistance to multiple antibiotics. The rise of drug-resistant strains of Mycobacterium tuberculosis has prompted an urgent need for innovative therapeutic solutions. One promising way to discover new tuberculosis drugs is by utilizing natural products from the vast biochemical space. Multidisciplinary methods can used to harness the bioactivity of these natural products. This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from bacteria isolated from gold mine tailings in South Africa. Bacterial strains were identified using 16S rRNA sequencing. The crude extracts obtained from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular networking were used to identify the functional constituents present in extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) was used to filter compounds that were strong binders to Mycobacterium tuberculosis Pks13 and PknG. The ligands returned from the VSW were subjected to optimization using density functional theory (DFT) at M06-2X/6-311++ (d,p) level of theory and basis set implemented in Gaussian16 Rev.C01. The optimized ligands were re-docked against Mycobacterium tuberculosis Pks13 and PknG. Molecular dynamics simulation and molecular mechanics generalized born surface area were used to evaluate the stability of the protein-ligand complexes formed by the identified hits. The hit that showed promising binding characteristics was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three bacterial isolates showed significant activity against the two strains of Mycobacterium, while only two, Bacillus subtilis and Bacillus licheniformis, exhibited activity against both Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis mc2155, and Mycobacterium aurum A+. The tentatively identified compounds from the bacterial crude extracts belonged to various classes of natural compounds associated with antimicrobial activity. Two compounds, cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A, showed strong binding against PknG and Pks13, with pre-MD MM-GBSA values of - 42.8 kcal/mol and - 47.6 kcal/mol, respectively. The DFT-optimized compounds exhibited the same docking scores as the ligands optimized using the OPSL-4 force field. After modifying vazabitide A, its affinity to the Pks13 binding site increased to - 85.8 kcal/mol, as revealed by the post-MD MM-GBSA analysis. This study highlights the potential of bacteria isolates from gold mine tailings as a source of new scaffolds for designing and optimizing anti-Mycobacterium agents. These agents synthesized in-silico can be further tested in-vitro to evaluate their efficacy.


Assuntos
Produtos Biológicos , Mycobacteriaceae , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , RNA Ribossômico 16S , Antibacterianos/farmacologia , Mycobacterium smegmatis/genética , Produtos Biológicos/farmacologia , Misturas Complexas , Antituberculosos/farmacologia , Antituberculosos/química
5.
J Microbiol ; 62(1): 49-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38337112

RESUMO

Tuberculosis (TB), a bacterial infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is a significant global public health problem. Mycobacterium tuberculosis expresses a unique family of PE_PGRS proteins that have been implicated in pathogenesis. Despite numerous studies, the functions of most PE_PGRS proteins in the pathogenesis of mycobacterium infections remain unclear. PE_PGRS45 (Rv2615c) is only found in pathogenic mycobacteria. In this study, we successfully constructed a recombinant Mycobacterium smegmatis (M. smegmatis) strain which heterologously expresses the PE_PGRS45 protein. We found that overexpression of this cell wall-associated protein enhanced bacterial viability under stress in vitro and cell survival in macrophages. MS_PE_PGRS45 decreased the secretion of pro-inflammatory cytokines such as IL-1ß, IL-6, IL-12p40, and TNF-α. We also found that MS_PE_PGRS45 increased the expression of the anti-inflammatory cytokine IL-10 and altered macrophage-mediated immune responses. Furthermore, PE_PGRS45 enhanced the survival rate of M. smegmatis in macrophages by inhibiting cell apoptosis. Collectively, our findings show that PE_PGRS45 is a virulent factor actively involved in the interaction with the host macrophage.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Imunidade Inata , Citocinas/metabolismo , Apoptose , Mycobacterium smegmatis/genética
6.
J Biol Chem ; 300(3): 105764, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367670

RESUMO

In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.


Assuntos
Proteínas de Bactérias , Complexo IV da Cadeia de Transporte de Elétrons , Mycobacterium smegmatis , Fator sigma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
7.
Protein Sci ; 33(3): e4912, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358254

RESUMO

Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.


Assuntos
Mycobacterium , Triptofano , Triptofano/metabolismo , Porinas/química , Porinas/genética , Porinas/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Metionina/metabolismo
8.
Int J Biol Macromol ; 261(Pt 2): 129849, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296141

RESUMO

An aqueous N-acylation reaction for preparing cinnamic acid amides was realized by using a variant of acyltransferase from Mycobacterium smegmatis (MsAcT-L12A), whereas the wild-type MsAcT showed no activity. MsAcT-L12A exhibited broad substrate adaptability, and preferred the substrates with electron-donating group. When the vinyl cinnamate (1a, 40 mM) and p-methoxyaniline (2a, 4 mM) were involved in the reaction, the excellent yield reached to 86.7 % ± 2.1 % within 3 h by MsAcT-L12A (1 mgpro./mL) in a PBS buffer (100 mM, pH 8.0) at 25 °C. The aqueous N-acylation reaction could be further improved by using an immobilized MsAcT-L12A. The biomass aspen powder (AP) as a carrier provided a low-cost, green, and environmental-friendly immobilization strategy. After it was modified by Ni-NTA, the obtained Ni-NAP could realize one-step purification and immobilization of MsAcT-L12A. The accomplished MsAcT-L12A-Ni-NAP exhibited excellent stability and recyclability, and retained its relative yield as 83.3 % ± 2.2 % even after the 7th cycle of reuse. Using only PBS buffer as a reaction medium, the operation for MsAcT-L12A-catalyzed acyl transfer was greatly simplified, and the improved stabilities of MsAcT-L12A-Ni-NAP could enhance its application potential.


Assuntos
Aciltransferases , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Pós , Água , Cinamatos
9.
Appl Environ Microbiol ; 90(2): e0203923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259108

RESUMO

The build-up of formaldehyde, a highly reactive molecule is cytotoxic and must be eliminated for the organism's survival. Formaldehyde detoxification system is found in nearly all organisms including both pathogenic and non-pathogenic mycobacteria. MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis (Msm), is an indispensable part of this system and forms a bicistronic operon with its downstream uncharacterized gene, fmh. We here show that Fmh, a putative metallo-beta-lactamase, is essential in tolerating higher amounts of formaldehyde when co-overexpressed with mscR in vivo. Our NMR studies indicate that MscR, along with Fmh, enhances formate production through a mycothiol (MSH)-dependent pathway, emphasizing the importance of Fmh in detoxifying formaldehyde. Although another aldehyde dehydrogenase, MSMEG_1543, induces upon formaldehyde addition, it is not involved in its detoxification. We also show that the expression of the mscR operon is constitutive and remains unchanged upon formaldehyde addition, as displayed by the promoter activity of PmscR and by the transcript and protein levels of MscR. Furthermore, we establish the role of a thiol-responsive sigma factor SigH in formaldehyde detoxification. We show that SigH, and not SigE, is crucial for formaldehyde detoxification, even though it does not directly regulate mscR operon expression. In addition, sensitivity to formaldehyde in sigH-knockout could be alleviated by overexpression of mscR. Taken together, our data demonstrate the importance of MSH-dependent pathways in detoxifying formaldehyde in a mycobacterial system. An absence of such MSH-dependent proteins in eukaryotes and its complete conservation in M. tuberculosis, the causative agent of tuberculosis, further unravel new drug targets for this pathogen.IMPORTANCEExtensive research has been done on formaldehyde detoxification in different bacteria. However, our current understanding of the mechanisms underlying this process in mycobacteria remains exceedingly little. We previously showed that MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis, plays a pivotal role in this detoxification pathway. Here, we present a potential S-formyl-mycothiol hydrolase named Fmh, thought to be a metallo-beta-lactamase, which functions along with mycothiol (MSH) and MscR to enhance formate production within this detoxification pathway. Co-expression of Fmh with MscR significantly enhances the efficiency of formaldehyde detoxification in M. smegmatis. Our experiments establish that Fmh catalyzes the final step of this detoxification pathway. Although an alternative sigma factor SigH was found to be involved in formaldehyde detoxification, it did not directly regulate the expression of mscR. Since formaldehyde detoxification is essential for bacterial survival, we envisage this process to be a potential drug target for M. tuberculosis eradication.


Assuntos
Cisteína , Glicopeptídeos , Inositol , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Fator sigma/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Formaldeído/metabolismo , beta-Lactamases/metabolismo , Formiatos/metabolismo , Proteínas de Bactérias/metabolismo
10.
Microbiol Spectr ; 12(3): e0251523, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289931

RESUMO

Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), remains a major global health problem ranking as the second leading cause of death from a single infectious agent. One of the major factors contributing toward Mtb's success as a pathogen is its unique cell wall and its ability to counteract various arms of the host's immune response. A recent genome-scale study profiled a list of candidate genes that are predicted to be essential for Mtb survival of host-mediated responses. One candidate was FtsEX, a protein complex composed of an ATP-binding domain, FtsE, and a transmembrane domain, FtsX. FtsEX functions through interaction with a periplasmic hydrolase, RipC. Homologs of FtsEX exist in other bacteria and have been linked with playing a key role in regulating peptidoglycan hydrolysis during cell elongation and division. Here, we report on Mycobacterium smegmatis, FtsE, FtsX, and RipC and their protective roles in stressful conditions. We demonstrate that the individual genes of FtsEX complex and RipC are not essential for survival in normal growth conditions but conditionally essential in low-salt media and antibiotic-treated media. Growth defects in these conditions were characterized by short and bulgy cells as well as elongated filamentous cells. Our results suggest that FtsE, FtsX, and RipC are required for both normal cell elongation and division and ultimately for survival in stressful conditions. IMPORTANCE: Mycobacterial cell growth and division are coordinated with regulated peptidoglycan hydrolysis. Understanding cell wall gene complexes that govern normal cell division and elongation will aid in the development of tools to disarm the ability of mycobacteria to survive immune-like and antibiotic stresses. We combined genetic analyses and scanning electron microscopy to analyze morphological changes of mycobacterial FtsEX and RipC mutants in stressful conditions. We demonstrate that FtsE, FtsX, FtsEX, and RipC are conditionally required for the survival of Mycobacterium smegmatis during rifampicin treatment and in low-salt conditions. Growth defects in these conditions were characterized by short and bulgy cells as well as elongated filamentous cells. We also show that the FtsEX-RipC interaction is essential for the survival of M. smegmatis in rifampicin. Our results suggest that FtsE, FtsX, and RipC are required for normal cell wall regulation and ultimately for survival in stressful conditions.


Assuntos
Proteínas de Bactérias , Proteínas de Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Bactérias/metabolismo , Rifampina/farmacologia , Peptidoglicano/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Concentração Osmolar , Antibacterianos
11.
Int J Biol Macromol ; 260(Pt 2): 129583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242409

RESUMO

Cell wall synthesis and cell division are two closely linked pathways in a bacterial cell which distinctly influence the growth and survival of a bacterium. This requires an appreciable coordination between the two processes, more so, in case of mycobacteria with an intricate multi-layered cell wall structure. In this study, we investigated a conserved gene cluster using CRISPR-Cas12 based gene silencing technology to show that knockdown of most of the genes in this cluster leads to growth defects. Investigating conserved genes is important as they likely perform vital cellular functions and the functional insights on such genes can be extended to other mycobacterial species. We characterised one of the genes in the locus, MSMEG_0311. The repression of this gene not only imparts severe growth defect but also changes colony morphology. We demonstrate that the protein preferentially localises to the polar region and investigate its influence on the polar growth of the bacillus. A combination of permeability and drug susceptibility assay strongly suggests a cell wall associated function of this gene which is also corroborated by transcriptomic analysis of the knockdown where a number of cell wall associated genes, particularly iniA and sigF regulon get altered. Considering the gene is highly conserved across mycobacterial species and appears to be essential for growth, it may serve as a potential drug target.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Mycobacterium smegmatis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium/genética , Mycobacterium/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Divisão Celular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
12.
Int Microbiol ; 27(1): 257-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37311924

RESUMO

Bacterial biofilms are a consortium of bacteria that are strongly bound to each other and the surface on which they developed irreversibly. Bacteria can survive adverse environmental conditions and undergo changes when transitioning from a planktonic form to community cells. The process of mycobacteria adhesion is complex, involving characteristics and properties of bacteria, surfaces, and environmental factors; therefore, the formation of different biofilms is possible. Cell wall-, lipid-, and lipid transporter-related genes (glycopeptidolipids, GroEL1, protein kinase) are important in mycobacterial biofilm development. We investigated gene expression during in vitro development of Mycobacterium smegmatis biofilms on a hydroxyapatite (HAP) surface. Biofilm formation by M. smegmatis cells was induced for 1, 2, 3, and 5 days on the HAP surface. Mycobacteria on polystyrene generated an air-liquid interface biofilm, and on the fifth day, it increased by 35% in the presence of HAP. Six genes with key roles in biofilm formation were analyzed by real-time RT‒qPCR during the biofilm formation of M. smegmatis on both abiotic surfaces. The expression of groEL1, lsr2, mmpL11, mps, pknF, and rpoZ genes during biofilm formation on the HAP surface did not exhibit significant changes compared to the polystyrene surface. These genes involved in biofilm formation are not affected by HAP.


Assuntos
Proteínas de Bactérias , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Poliestirenos/metabolismo , Biofilmes , Expressão Gênica , Hidroxiapatitas/metabolismo , Lipídeos
13.
Vet Microbiol ; 288: 109922, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086162

RESUMO

Mycobacterial PE_PGRS family proteins play key roles in pathogen-host interaction. However, the function of most PE_PGRS proteins remains unknown. In this study, we characterized the role of PE12 of Mycobacterium bovis (M. bovis) on bacterial growth, bacterial survival, and host cell apoptosis. Transcriptome sequencing of infected THP-1 cells was also performed. Compared to Ms_Vec, we found that M. bovis PE12 did not alter the colony morphology of M. smegmatis. The survival of Ms_PE12 was obviously higher than that of Ms_Vec. Furthermore, PE12 significantly suppressed the apoptosis of THP-1 induced by M. smegmatis infection. Transcriptome analysis results showed that there were 70 downregulated genes in the Ms_PE12 infection group in comparison with the Ms_Vec infection group, and these differentially expressed genes were enriched in 240 downregulated GO terms and 6 KEGG pathways. The downregulated expression genes are involved in cell adhesion, phagocytosis, apoptosis, inflammatory response, glycolysis and transmembrane transporter activity. Taken together, our study reveals that PE12 can suppress apoptosis and inhibit proinflammatory cytokine response. We propose that PE12 is related to macrophage phagocytosis and apoptosis, providing useful information to the pathogenic mechanisms of M. bovis.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Animais , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Apoptose , Fagocitose , Mycobacterium tuberculosis/genética
14.
J Biol Chem ; 300(1): 105567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103641

RESUMO

The role of RNA G-quadruplexes (rG4s) in bacteria remains poorly understood. High G-quadruplex densities have been linked to organismal stress. Here we investigate rG4s in mycobacteria, which survive highly stressful conditions within the host. We show that rG4-enrichment is a unique feature exclusive to slow-growing pathogenic mycobacteria, and Mycobacterium tuberculosis (Mtb) transcripts contain an abundance of folded rG4s. Notably, the PE/PPE family of genes, unique to slow-growing pathogenic mycobacteria, contain over 50% of rG4s within Mtb transcripts. We found that RNA oligonucleotides of putative rG4s in PE/PPE genes form G-quadruplex structures in vitro, which are stabilized by the G-quadruplex ligand BRACO19. Furthermore, BRACO19 inhibits the transcription of PE/PPE genes and selectively suppresses the growth of Mtb but not Mycobacterium smegmatis or other rapidly growing bacteria. Importantly, the stabilization of rG4s inhibits the translation of Mtb PE/PPE genes (PPE56, PPE67, PPE68, PE_PGRS39, and PE_PGRS41) ectopically expressed in M. smegmatis or Escherichia coli. In addition, the rG4-mediated reduction in PE/PPE protein levels attenuates proinflammatory response upon infection of THP-1 cells. Our findings shed new light on the regulation of PE/PPE genes and highlight a pivotal role for rG4s in Mtb transcripts as regulators of post-transcriptional translational control. The rG4s in mycobacterial transcripts may represent potential drug targets for newer therapies.


Assuntos
Proteínas de Bactérias , Quadruplex G , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis , Biossíntese de Proteínas , RNA Bacteriano , RNA Mensageiro , Humanos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos/genética , Inflamação/microbiologia , Ligantes , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Estabilidade de RNA , RNA Bacteriano/genética , RNA Mensageiro/genética , Células THP-1 , Transcrição Gênica/efeitos dos fármacos
15.
J Vis Exp ; (202)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38145372

RESUMO

Most bacteria, including mycobacteria, generate extracellular vesicles (EVs). Since bacterial EVs (bEVs) contain a subset of cellular components, including metabolites, lipids, proteins, and nucleic acids, several groups have evaluated either the native or recombinant versions of bEVs for their protective potency as subunit vaccine candidates. Unlike native EVs, recombinant EVs are molecularly engineered to contain one or more immunogens of interest. Over the last decade, different groups have explored diverse approaches for generating recombinant bEVs. However, here, we report the design, construction, and enrichment of recombinant mycobacterial EVs (mEVs) in mycobacteria. Towards that, we use Mycobacterium smegmatis (Msm), an avirulent soil mycobacterium as the model system. We first describe the generation and enrichment of native EVs of Msm. Then, we describe the design and construction of recombinant mEVs that contain either mCherry, a red fluorescent reporter protein, or EsxA (Esat-6), a prominent immunogen of Mycobacterium tuberculosis. We achieve this by separately fusing mCherry and EsxA N-termini with the C-terminus of a small Msm protein Cfp-29. Cfp-29 is one of the few abundantly present proteins of MsmEVs. The protocol to generate and enrich recombinant mEVs from Msm remains identical to the generation and enrichment of native EVs of Msm.


Assuntos
Vesículas Extracelulares , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium smegmatis/genética , Vesículas Extracelulares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
16.
World J Microbiol Biotechnol ; 40(2): 45, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114754

RESUMO

Human senescence marker protein 30 (huSMP30) has been characterized as a multifaceted protein consisting of various enzymatic and cellular functions. It catalyzes the interconversion of L-gulonate and L-gulono-γ-lactone in the ascorbate biosynthesis pathway. Therefore, we hypothesized that it could be a potential anti-biofilm agent against pathogenic bacteria due to its lactonase activity. In order to corroborate this, the huSMP30 was recombinantly expressed, purified, and analyzed for its ability to inhibit Mycobacterium smegmatis biofilm formation, which showed a concentration-dependent inhibition as compared to the untreated control group. Further, in silico analysis was performed to redesign the huSMP30 with enhanced lactonase activity. Molecular docking analysis of the huSMP30 and lactone substrates facilitated the selection of three single amino acid substitutions (E18H, N154Q, and D204V), which were created using a PCR-based site-directed mutagenesis reaction. These mutant proteins and the wild-type huSMP30 were purified, and the effects on the enzymatic activity and biofilm formation were studied. The mutants E18H and D204V showed non-significant effects on specific lactonase activity, catalytic efficiency, and anti-biofilm property; however, the mutant N154Q showed significant improvement in the specific lactonase activity, catalytic efficiency, and inhibition in the biofilm formation. The protein stability analysis revealed that the wild-type huSMP30 and its designed mutants were stable at 37 °C for up to 4 days. In conclusion, the anti-biofilm property of the huSMP30 has been established, and an engineered version, N154Q, inhibits biofilm formation with greater efficiency. Human SMP30 is a versatile protein with multiple cellular and enzymatic functions, however, its anti-biofilm potential has not been explored. Our work presents the method to produce soluble and active huSMP30 in the E. coli expression system and establishes its role as an anti-biofilm agent against Mycobacterium smegmatis owing to its lactonase activity. Our results provide support for the future advancement of huSMP30 as a potential anti-biofilm agent targeting pathogenic Mycobacterium species.


Assuntos
Escherichia coli , Mycobacterium smegmatis , Humanos , Biofilmes , Escherichia coli/genética , Escherichia coli/metabolismo , Lactonas/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico
17.
Microbiol Spectr ; 11(6): e0175223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966202

RESUMO

IMPORTANCE: The genus of Mycobacterium includes important clinical pathogens (M. tuberculosis). Bacteria of this genus share the unusual features of their cell cycle such as asymmetric polar cell elongation and long generation time. Markedly, control of the mycobacterial cell cycle still remains not fully understood. The main cell growth determinant in mycobacteria is the essential protein DivIVA, which is also involved in cell division. DivIVA activity is controlled by phosphorylation, but the mechanism and significance of this process are unknown. Here, we show how the previously established protein interaction partner of DivIVA in mycobacteria, the segregation protein ParA, affects the DivIVA subcellular distribution. We also demonstrate the role of a newly identified M. smegmatis DivIVA and ParA interaction partner, a protein named PapM, and we establish how their interactions are modulated by phosphorylation. Demonstrating that the tripartite interplay affects the mycobacterial cell cycle contributes to the general understanding of mycobacterial growth regulation.


Assuntos
Mycobacterium smegmatis , Mycobacterium tuberculosis , Mycobacterium smegmatis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Ciclo Celular , Peptídeos e Proteínas de Sinalização Intercelular , Mycobacterium tuberculosis/metabolismo
18.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37934806

RESUMO

During infection, bacteriophages produce diverse gene products to overcome bacterial antiphage defenses, to outcompete other phages, and to take over cellular processes. Even in the best-studied model phages, the roles of most phage-encoded gene products are unknown, and the phage population represents a largely untapped reservoir of novel gene functions. Considering the sheer size of this population, experimental screening methods are needed to sort through the enormous collection of available sequences and identify gene products that can modulate bacterial behavior for downstream functional characterization. Here, we describe the construction of a plasmid-based overexpression library of 94 genes encoded by Hammy, a Cluster K mycobacteriophage closely related to those infecting clinically important mycobacteria. The arrayed library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 24 gene products (representing ∼25% of the Hammy genome) capable of inhibiting growth of the host bacterium Mycobacterium smegmatis. Half of these are related to growth inhibitors previously identified in related phage Waterfoul, supporting their functional conservation; the other genes represent novel additions to the list of known antimycobacterial growth inhibitors. This work, conducted as part of the HHMI-supported Science Education Alliance Gene-function Exploration by a Network of Emerging Scientists (SEA-GENES) project, highlights the value of parallel, comprehensive overexpression screens in exploring genome-wide patterns of phage gene function and novel interactions between phages and their hosts.


Assuntos
Bacteriófagos , Micobacteriófagos , Mycobacterium , Mycobacterium smegmatis/genética , Micobacteriófagos/genética , Mycobacterium/genética , Bacteriófagos/genética , Plasmídeos
19.
Tuberculosis (Edinb) ; 143: 102421, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879126

RESUMO

Mycobacterium tuberculosis secrets various effector proteins to evade host immune responses for facilitating its intracellular survival. The bacterial genome encodes several unique PE/PPE family proteins, which have been implicated to play important role in mycobacterial pathogenesis. A member of this family, PPE2 have been shown to contain a monopartite nuclear localization signal (NLS) and a DNA binding domain. In this study, we demonstrate that PPE2 protein is present in the sera of mice infected with either M. smegmatis expressing PPE2 or a clinical strain of M. tuberculosis (CDC1551). It was found that exogenously added PPE2 can permeate through the macrophage cell membrane and eventually translocate into the nucleus which requires the presence of NLS which showed considerable homology to HIV-tat like cell permeable peptides. Exogenously added PPE2 could inhibit NO production and decreased mycobacterial survival in macrophages. PPE2-null mutant of M. tuberculosis failed to inhibit NO production and had poor survival in macrophages which could be rescued by complementation with full-length PPE2. PPE2-null mutants also had poor survival in the lungs of infected mice indicating that PPE2 even when present in the bloodstream can confer a survival advantage to mycobacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Antígenos de Bactérias/genética , Tuberculose/microbiologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo
20.
Microbiology (Reading) ; 169(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37862100

RESUMO

Bacteria use population heterogeneity, the presence of more than one phenotypic variant in a clonal population, to endure diverse environmental challenges - a 'bet-hedging' strategy. Phenotypic variants have been described in many bacteria, but the phenomenon is not well-understood in mycobacteria, including the environmental factors that influence heterogeneity. Here, we describe three reproducible morphological variants in M. smegmatis - smooth, rough, and an intermediate morphotype that predominated under typical laboratory conditions. M. abscessus has two recognized morphotypes, smooth and rough. Interestingly, M. tuberculosis exists in only a rough form. The shift from smooth to rough in both M. smegmatis and M. abscessus was observed over time in extended static culture, however the frequency of the rough morphotype was high in pellicle preparations compared to planktonic culture, suggesting a role for an aggregated microenvironment in the shift to the rough form. Differences in growth rate, biofilm formation, cell wall composition, and drug tolerance were noted among M. smegmatis and M. abscessus variants. Deletion of the global regulator lsr2 shifted the M. smegmatis intermediate morphotype to a smooth form but did not fully phenocopy the naturally generated smooth morphotype, indicating Lsr2 is likely downstream of the initiating regulatory cascade that controls these morphotypes. Rough forms typically correlate with higher invasiveness and worse outcomes during infection and our findings indicate the shift to this rough form is promoted by aggregation. Our findings suggest that mycobacterial population heterogeneity, reflected in colony morphotypes, is a reproducible, programmed phenomenon that plays a role in adaptation to unique environments and this heterogeneity may influence infection progression and response to treatment.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium , Humanos , Mycobacterium abscessus/genética , Mycobacterium smegmatis/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...